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is hampered by the inaccessibility of bone for investigation. Bone densitom-
etry is an effective, noninvasive, and quantitative method for the agsessment of
the risk of fracture, but structures such as the vertebsal body are depicted as a two-
dimensional image — the areal bone mineral density cast by the attenuation of
photons by mineral during their passage through bone. Just as the shadow of the
earth, cast on the moon, reveals nothing of the topology of the earth’s mountain
ranges, the densitometric image tells us little about the two properties that deter-
mine bone strength; its material composition and its structural design, 2
In this review, we define how the composition and structure of bone determine
its strength, describe bone madeling and remodeling — the cellular machinery re-
sponsible for constructing bone during growth and reconstructing it during adult-
hood, demonstrate how age-related abnormalities in these processes compromise
the composition and structure of bone, and show how the mechanisms underlying
the structural decay of bone offer rational approaches to the use of drugs that in-
hibit bone resorption and stimulate bone formation.

P ROGRESS {N UNDERSTANDING THE PATHOGENESIS OF BONE FRAGILITY

FABRIC AND STRUCTURE OF BONE — LEVERS AND SPRINGS

The strength of bone is determined by its material composition and steucture.?
Bone must be stiff and able to resist deformation, thereby making loading possible.
Bone must also be flexible: it must be able to absorb energy by deforming, to short-
en and widen when compressed, and to lengthen and narrow in tension without crack-
ing. If bone is brittle (i.e., too stiff and unable to deform a little}, the energy imposed
during loading will be released by structura) failure — initially by the development
of microcracks and then by complete fracture. If bone is too flexible and deforms
beyond its peak strain, it will also crack. Bone must also be light to facilitate move-
ment. A unique feature of bone is that it can serve these contradictory needs of stift-
ness yet flexibility and lightness yet strength.3

COMPOSITION OF BONE

Bone is composed of type I collagen stiffened by crystals of calcium hydroxyapa-
tite. An increase in tissue mineral density increases the stiffness of the fabric but
sacrifices flexibiliry.2# Variations in tissue mineral density affect function, Andi-
tory ossicles are 90 percent mineral, conferring the stiffness essential for the fidelity
of sound transmission (like tuning forks). Animal antlers are 40 percent mineral,
conferring the flexibility needed to absorb energy during head burting to defeat
suitors in mating season. Human bone is about 60 percent mineralized. The com-
position and degree of collagen cross-linking also influence function.>® The triple
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Figure 1. The Hierarchical Siructure of Corlical Bane.

Within a cortical bone shaft, shown in cross-section
{Panei A} are osteons surrounded by interstitial bone
and many osteocytic lacunae distributed around the
central haversian canal (Panel B). Panel C shows a mi-
crocrack that is lavgely confined to interstitial bone.
Panel D shows the haversian canal system in cortical
bone (microcomputed tomography courtesy of M.A,
Knackstedt, Australizn National University). In Panel E,
alternating high-density and low-density concentric
lamellae of an osteon produce a composite structure
that is resistant to cracking, with an psteocytic lacuna
at a higher resolution showing collagen fibers {Panel F}
{scanning electron microscopy reprinted from Marotti®®
with the permission of the publisher}. In Panel G, osteo-
cytes connect with lining cells and with one another
through a network of canaliculi (scanning electron mi.
croscopy of an acid-etched resin-embedded murine bone
section, courtesy of Dre. Lynda F. Bonewald and Jian
Q. Feng, University of Missouri—Kansas City). Panel H
shows the detail of an osteoblast lining cefl connected to
an osteocyte (transmission eleciron micrascopy reprint-
ed from Marotti*® with the permission of the publishar).

helix of type I collagen confers strength in ten-
sion. The cross-links in collagen keep its helixes
fastened. If there are too few cross-links, the he-
lixes may separate; if there are too many, the abil-
ity to absortb energy diminishes,

MICROSTRUCTURE AND MACROSTRUCTURE OF BONE
Bone fabric is woven at submicroscopic, micro-
scopic, and macroscopic levels into an architec-
tural masterpiece of biomechanical engineering
— with an optimal mass adapted in size, shape,
and architecture for structural strength (i.e., the
ability to resaist cracking).® Just as a wall is con-
structed with overlapping bricks, cortical bone
consists of overlapping parallel osteons, the ana-
tomical remnants of a completed remodeling
event (Fig. 1).** A large number of osteons per
unit of bone volume limits the propagation of
cracking because they obstruct the passage of a
crack as it navigates between the many osteons.®
The entry of cracks into the osteon is blocked by
the cement line delimiting each osteon and by
concentric lamellae of mineralized collagen fi-
bers that are packed in an alternating loose and
dense pattern and are orientated in various direc-
tions. In addition, uncracked bone tissue within
a crack forms a bridge that carries the load that
otherwise would he used to drive the crack for-
ward. ! As a result, cracks are largely confined to
the older, more densely mineralized interstitial

bone between osteons.*? Although small, con-
fined cracks are undesirable, they are a final means
of dissipating energy as a defense againat the alter-
native means of energy release imposed by the
stress on bone — fracture.?
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LEVER ACTION OF LONG BONES

Cortical bone is used to build long bones. Long
bones are levers needed for loading and move-
ment, with rigidity favored over flexibility. Struc-
tura) stiffness and lightness are achieved by the
construction of a marrow cavity, Long bones grow
in length by endochondral apposition on the in-
net, or endosteal, surface and in width by the de-
position of bone on the outer, or perigsteal, sur-
face. Resorptive excavation of a marrow cavity
during fetal and postnatal growth shifts the thick
ening cortex away from the neutral axis, thereby
increasing resistance to bending.® Sex and racial
differences in the extent of periosteal apposition
and endocortical resorption during growth and
aging establish variations in the diameter and
cortical thickness of bone and in the distance of
the cortical mass from the neutral axis —— and thus
differences in bone strength,2+%?

Long bones are not like drinking straws, which
have the same diameter and thickness through-
out. The conical metaphyses are fashioned by the
resorption and formation of bone on the periosteal
surface, whereas endochondral bone forms the
trabecular network. External and internal contours
differ at each point along and around the shaft.
For example, the femoral neck adjacent to the
shaft is elliptical, with the longest diameter in
the superior—inferior direction and greater cor-
tical thickness inferiody; these features mimimize
bending.'* Near the femoral head, where stresses
are mainly compressive, the femoral neck is more
circular and largely trabecular, with a cortex of
similar thickness around its perimeter. These
structural adaptations to loading are not seen in
quadrupedal primates.**

SPRING ACTION OF VERTEBRAL BODIES
Bone that will become vertebral bodies is assem-
bled as an open-celled, porous structure that func-
tions more like a spring than a lever in that the
sponge-like structural design can absorb more
energy by deforming more before cracking than
can long bones. However, this structure sacrifices
the ability to tolerate the peak loads that can be
borpe by long bones. The interconnecting tmabecu-
lar plates achieve lightness and favor structural
flexibility over stiffness.2®

The greater loads that are better tolerated in
men than in women and in some races better than
in others are largely due to differences in bone
dimensions.’**5 Men and women generally have

similar vertebral trabecular volumetric density
(number plus thickness) and similar vertebral
heights; the larger vertebral cross-sectional
area in men contributes to sex-based differ-
ences in bone strength.' Black people tend to
have wider but shorter vertebral bodies and
higher measures of trabecular volumetric density
than do white people owing to thicker trabecu-
lag, a feature that may protect against the ef-
fects of age-related bone loss.2+2?

The structure of bone is contained in the ge-
petic blueprint — fetal lower limb buds grown
in vitro have the shape of the proximal femur.*
Although structure determines the loads a bone
will tolerate, the reverse also applies: loads de-
termine structure. Bone can adapt its composi-
tion and structure to prevailing loads.?® Adap-
tation in size and shape in the playing arm of
tennis players is well documented.? The Movl3
mouse, a model of the mild form of osteogenesis
imperfecta, compensates for defects in bone col-
lagen by a structural adaptation that entails peri-
osteal apposition; the Brittle IV mouse, another
model of osteogenesis imperfecta, makes adap-
tations in the mineral:collagen ratio.?®? How-
ever, such adaptations may be unsuccessful. In the
osteogenesis imperfecta (oimfoim) mouse, a com-
pensatory increase in bone formation with de-
fective collagen does not correct bone fragility.2
Thus, bone fragility can be the result of failed mate-
rial or structural adaptations or both, not just low
bone mass.

MODELING AND REMODELING
OF BONE

The cellular mechanisms responsible for the ad-
aptation of bone are modeling (construction) and
remodeling (reconstruction). Bone modeling pro-
duces a change in the size and shape of bone when
new bone is deposited without previous bone re-
sorption. During bone remodeling, resorption
by osteoclasts precedes bone formation by os-
teoblasts. Osteoblasts and osteoclasts form the
bone multicellular unit that reconstructs bone
in distinct locations on the three components (en-
docortical, intracortical, and trabecular) of its
endosteal envelope and, to a lesser extent, on the
periosteal envelope.?® Bone modeling and remod-
eling modify the external size and contours of
bone and its internal architecture by the deposi-
tion or removal of bone from the surface of bone,
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or after damage to bone — is associated with a
loss of bone strength before any bone loss. 237
The death of these cells probably heralds (through
biochemical and chemotactic signals) the pres-
ence of damage and its location and the initia-
tion of targeted remodeling, Regions of micro-
damage contain apoptotic osteocytes, whereas
quiescent zones do not.*” The number of osteo-
cytes that undergo apoptosis may provide the topo-
graphic mformation needed to target removal of
damage by osteoclasts.

Hence, the first step in remodeling is unlikely
to be bone resorption. Osteoclasts must first be
formed and be told where to go and how much
bone to resorb. These instructions are likely to
arise from signals produced by the deformation
or death of osteocytes, which define the location
and amount of resorption needed. The signals are
probably relayed, in part, by the cytoplasmic pro-
cesses connected to flattened osteoblast lining
cells.?* These lining cells partly form the canopy
of a hone-remodeling compartment.3® Within this
microenvironment, local factors, including vas-
cular growth factors, provide the vascular supply,
osteoclast precursors, macrophages, and activated
T cells that participate with osteoblast precursors
in osteoclastogenesis. Osteoblast precursors go
on o become mature osteoid-forming osteoblasts,
Bone formation may also be coupled with bone
resorption by products from the resorbed matrix
and from osteoclasts themselves, 34 Thus, the
osteocyte is involved in initiating remodeling, and
subsequent local regulation is bidirectional, with
osteoblast precursors directing osteoclastogenesis
and products of the osteoclast and of the resorbed
matrix modulating bone formation.

NEGATIVE BALANCE IN THE BONE
MULTICELLULAR UNIT

A negative balance in the bone multicellular unit
— which causes bone loss, an increased remod-
eling rate, or both — compromises the strength
of bone. During growth, the balance between the
volume of bonte that is resorbed and the volume
that is formed in the bone muyliticellular unit is
positive on a trabecular surface, so that each re-
modeling event adds a small moiety of bone. As
skeletal size reaches its programmed dimensions,
the need for rapid remodeling and a positive bal-
ance between the volume of bone removed and
the volume of bone deposited in each bone multi-

celinlar unit lessens. The remodeling rate decreas-
es as longitudinal growth ceases with epipbyseal
closure.** The volume of bone formed in each bone
multicellular unit may also decline, shifting the
balance between the volume of bone that is re-
moved and the volume that is formed in each bone
multicellular unit from positive to equal {i.e., zero).

In adults, one of the first changes in the remod-
eling machinery that leads to bone loss is likely
to be a decline in bone formation within the bone
multicellular unit. There is evidence of a reduc-
tion in bone formation in midlife,#24? but this
may begin in young adults when tbe need o build
the skeleton (and thus the need for bone forma-
tion) declines.*++* When bone formation is less
than prior bone resorption, each remodeling event
removes a small moiety of bone from the skeleton,
resulting in bone loss and structural damage.

The positive balance in the bone multicellular
unit (net bone formation) during growth and the
negative balance (net bone loss) during aging are
small. For these reasons, the rate of gain in bone
during growth and loss during aging is driven
more by a high remodeling rate than by the mag-
nitude of the positive or negative balance in the
bone multicellular unit, This consideration is im-
portant, given the effect of antiresorptive agents
such as the bisphosphonates on the rate of remod-
eling. Largely on the basis of cross-sectional data,
bone loss appears to begin between the ages of
18 and 30 years, but the process is slow because
remodeling is slow.*”

Rapid remodeling (independent of an imbal-
ance in the bone multicellular unit) is associated
with an increased risk of fracture for several rea-
sons. First, more densely mineralized bone is re-
moved and replaced with younger, less densely
mineralized bone, reducing material stiffness, *-5¢
As a resylt, bone may become too flexible, bend
excessively, and crack under usual loading condi-
tions, Second, excavated resorption sites remain
temporarily unfilled (because of the delay in the
inittation and slower completion of bone forma-
tion that is coupled with resorption), creating
stress concentrators that predispose bone to micro-
damage (as a small cut on the surface of a glass
cylinder makes the tube easy to snap).? Third,
increased remodeling impairs isomerization and
maturation of collagen, which increases the fragil-
ity of bone,¢ probably by altering the cross-
linking between adjacent collagen fibers.

Estrogen deficiency (e.g., after menopause) in-
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creases the rate of remodeling and the volume of
bone that is resorbed by prolonging the life span
of osteoclasts. It also decreases the volume of bone
that is formed by reducing the life span of osteo-
blasts, thereby aggravating the negative bone bal-
ance in the bone multicellular nnit.5! The combi-
nation of a rapid rate of remodeling and increased
imbalance in the bone multicellular unit acceler-
ates bone loss and structural decay after meno-
pause.

TRABECULAR THINNING AND LOSS

OF CONNECTIVITY

Remodeling occurs on bone surfaces. Trabecular
bone is fashioned with more surface than corti-
cal bone. Since there are more remodeling sites
pet unit volume in trabecular bone than in corti-
cal bone, a greater proportion of trabecular bone
is turned over and lost as each remodeling event
removes more bone than it puts back.52 The high
remodeling rate and deep resorption cavities pro-
duce a loss of trabecular platcs and of their con-
nection (connectivity), which in turn produce a
greater deficit in bone strength than does tra-
becular thinning.*

Bone fragility is more common in women than
in men partly because the production of sex hor-
mones in males does not decrease rapidly and
there is no increase in the bone-remodeling rw
in midlife. Although perforation and loss of con-
nectivity between trabeculae occur in men, bone
loss in men proceeds more by trabecular thinning
(due to reduced bone formation within each
bone multicellular unit) than by trabecular per-
foration (due to increased hone resorption with-
in each bone multicellular unir) 5457

CORTICAL THINNING AND POROSITY
Rapid remodeling does not slow down with age;
it continues because of persistent hypogonadism
in women, emerging hypogonadism in some men,
and secondary byperparathyroidism in both sexes.
With continued remodeling, trabeculae perforate
and some disappear completely, and remodeling is
morte active on the endocortical surface than on
reraining trabecular surfaces. Active endocorti-
cal and intracortical remodeling “trabecularizes”
cortical bone (i.e., creates cortical bone with
more surface area), so bone loss becomes mainly
cortical in origin.55%5¢

Structural decay accelerates as each remodel-
ing event removes bone from an ever-decreasing

total volume of bone. Older, more densely min-
eralized interstitial bone, distant from surface re-
modeling, has a reduced number of osteocytes and
accumulates microdamage.'? Cortical thinning
and porosity reduces the resistance of bone to the
propagation of cracks. Pores coalesce, and the re-
duced bone mass cannot absotb the energy im-
parted by a fall,

PERIOSTEAL APPOSITION
Concurrent periosteal apposition, by depositing
new bone on the external surface, partly offsets
the loss of compressive and bending strength pro-
duced by cortical thinning and porosity, so that
cortical thickness is better maintained than would
occur without periosteal apposition.54-52 However,
details of the magnitude of changes in periosteal
apposition during advancing age — as well as the
effects of site, sex, and race — are difficult to
evaluate prospectively, given the small changes
in periosteal apposition (a few millimeters)
throughout adult life. In addition, periosteal ap-
position is difficuit to interpret in cross-sectional
studies, given secular trends in bone mass and
dimensions,%* The findings in one study®? that
periosteal apposition occurs in the years after
menopause to compensate for accelerated bone
loss needs confirmation. Even the notion that
periosteal apposition is greater in men than in
women remains controversial»%+5; recent stud-
ies suggest that sex-based differences occur at
some, but not all, sites. % Moreover, these sex-
based differences may vary according to race.
Albright and his colleagues suggested that
osteoporosis is a disorder of reduced bone for-
mation,® but they did not specify its morpho-
logic basis. We now believe that in addition to the
decreased volume of bone that is formed in each
bone multicellular unit during aging,** the re-
duced formation of periosteal bone during growth,
aging, or both partly explains the smaller size of
the vertebral body and smaller bone mineral mass
in women and men with vertebral fractures.%58

BONE FRAGILITY IN PATIENTS WITH FRACTURES

Not all fractures have the same pathogenesis or
structural abnormalities that cause bone fragil-
ity. Some fractures are associated with reduced
tissue mineral density®®; in others, there is a re-
duced density of osteocytes.” Women with frac-
tures may have high, normal, or low rates of remod-
eling. Some women with fractures have a negative
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maintain its strength by adapting one trait to
compensate for a defect in another. Advancing age
is accompanied by accumulating abnormalities
in this cellular machinery, hormonal deficiency
and excess, deficiency and excess of local growth
factors, declining muscle mass and mobility, nutri-
tional deficiencies, and other factors that over-
whelin the declining ability of the remodeling
machinery to adapt bone to prevailing loads, Ab-
normalities in the balance and rate of remodel-
ing and limits to periosteal apposition compromise
the material composition and structural design

of bone so that it is no longer “just right” for the
loads it must endure, Bone fragility is the conse-
quence of failed adaptation, Why bones become
fragile is a problem of cell biology. How and when
bones fail is a problem of biomechanical engineer-
ing. The solution to the problem of structural fail-
ure requires a study of the qualities of bone and
the cellular mechanisms maintaining these qual-

ities from region to region in the body.
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