Pathophysiology of Postmenopausal & Glucocorticoid Induced Osteoporosis

> March 15, 2016 Bone ECHO Kate T Queen , MD

Review: normal bone formation

Bone Modeling

Normal shape modification

Remodeling

Peak Bone Mass

- Maximum bone mass achieved in life
- Usually in the 3rd decade of life
- 60 -80% peak bone mass has genetic determinants (ethnicity, sex, body size)
- variability related to environmental factors (diet, exercise, habits, diseases, medications)
- Chronic diseases during childhood

Cellular Components 10 % of bone volume

Osteoprogenitor cells

(mesenchymal stem cells)

- Osteoblasts
- Bone lining cells
- Osteocytes

Hematopoetic stem cells

Osteoclasts

Osteoblasts

Extracelluar Components Collagen – Type 1

Extracelluar Components Inorganic Matrix

Bone Lining Cells

Osteocytes

Osteoclast

Postmenopausal Osteoporosis

Cellular / molecular level

Estrogen promotes:

- mesenchymal stem cell differentiation to osteoblast lineage
- Preosteoblast to osteoblast differentiation
- Limits osteocyte and osteoblast apoptosis
- Estrogen increases:

- Osteoblast production of growth factors (IGF1,TGF beta) and procollagen synthesis

Cellular / molecular level

Estrogen promotes:

- Reduces serum and bone marrow levels of Sclerostin (potent inhbitor of Wnt signaling)
- Estrogens effects on osteoclasts:

- Reduces production of RANKL (central molecule in osteoclast development)

- Increases production of OPG (soluble RANKL decoy receptor)

- Prior to menopause bone formation = resorption rates
- Declining estrogen levels
 - increase BMU activation frequency
 - extension of resorption phase
- Bone resorption increases by 90% Bone formation by 45%

With accelerated bone loss:

- Efflux of calcium into extracelluar fluid

- Compensatory mechanisms limit hypercalcemia:
 - * Increased renal calcium clearance
 - * Decreased intestinal calcium absorption
 - * Partial suppression of PTH secretion

Declining estrogen:

- increased RANKL and decreases OPG increased osteoclast development / activity
- cytokines produced by osteoblasts, now rise including IL1, IL6, TNF alpha, MCSF(macrophage colony stimulating factor) all of which play a role in mediating bone resorption
- Loss impact on promoting apoptosis of osteoclast lineage cells and of mature osteoclasts

Summary

Estrogen deficiency

- Increased renal calcium clearance
- Decreased intestinal calcium absorption
- Partial suppression of PTH secretion
- Increases osteoclast recruitment, differentiation , and survival
- Osteoblast activity and differentiation declines. Increase in premature apoptosis
- T cell generated cytokines increase that promote bone resorption (IL1, IL6, TNF alpha)

Glucocorticoid Induced Osteoporosis

Glucocorticoid Induced Osteoporosis

- 2nd most common kind of osteoporosis
- Most common iatrogenic form of the disease
- Fractures may occur in 30-50% of patients on chronic glucocorticoid therapy
- Often asymptomatic prevalent vertebral fractures
- Increase risk of future vertebral fractures independent of BMD

Glucocorticoid Induced Osteoporosis

- Reduction in BMD biphasic:
- 6-12 % loss in the 1st year followed by
- Slower annual loss of about 3%
- Risk of fracture escalates as much as 75% in 1st
 3 months before significant decline in BMD
- Pts steroids various disorders pred 10mg/day
 > 90 days 7 fold increase in hip fractures and 17 fold increase in vertebral fractures

(Steinbuch, et al 2004 OI 15:323-328)

Glucocorticoid Induced Osteoporosis

• GIOP diffuse. Effects cortical and trabecular bone. Predilection for fractures in sites of predominately trabecular (cancellous)

Architectural changes

- Loss of trabecular connectivity
- Impact of loss of horizontal trabeculae

Table 1 – Pathophysiology of corticosteroid-related bone loss

Effects of corticosteroid use	Result
Inhibition of vitamin D–mediated calcium absorption, hypercalciuria	Secondary hyperparathyroidism
Inhibition of gonadotrophin secretion, decreased gonadal hormone secretion	Hypogonadism
Bone cell aging and death	Early aging and death of osteocytes and osteoblasts, impaired formation and function
Bone cell longevity and function	Osteoclastic longevity, bone destruction
Changes in bone quality: trabecular thinning and perforations	Microarchitectural destruction, loss of strength, increased fracture risk

Glucocorticoid induced Osteoporosis

Weinstein, RS NEJM 2011:365:62-70

Summary

- Reduced calcium absorption
- Hypercalcuria
- Decrease in gonadotropins
- Osteoclasts increased longevity early
- Osteoblasts / Osteocytes
 - Reduced formation/function
 - Early aging /death